Cross talk between the +73/294 interaction and the cleavage site in RNase P RNA mediated cleavage.
نویسندگان
چکیده
To monitor functionally important metal ions and possible cross talk in RNase P RNA mediated cleavage we studied cleavage of substrates, where the 2'OH at the RNase P cleavage site (at -1) and/or at position +73 had been replaced with a 2' amino group (or 2'H). Our data showed that the presence of 2' modifications at these positions affected cleavage site recognition, ground state binding of substrate and/or rate of cleavage. Cleavage of 2' amino substituted substrates at different pH showed that substitution of Mg2+ by Mn2+ (or Ca2+), identity of residues at and near the cleavage site, and addition of C5 protein influenced the frequency of miscleavage at -1 (cleavage at the correct site is referred to as +1). From this we infer that these findings point at effects mediated by protonation/deprotonation of the 2' amino group, i.e. an altered charge distribution, at the site of cleavage. Moreover, our data suggested that the structural architecture of the interaction between the 3' end of the substrate and RNase P RNA influence the charge distribution at the cleavage site as well as the rate of cleavage under conditions where the chemistry is suggested to be rate limiting. Thus, these data provide evidence for cross talk between the +73/294 interaction and the cleavage site in RNase P RNA mediated cleavage. We discuss the role metal ions might play in this cross talk and the likelihood that at least one functionally important metal ion is positioned in the vicinity of, and use the 2'OH at the cleavage site as an inner or outer sphere ligand.
منابع مشابه
RNase P RNA-mediated catalysis.
The endoribonuclease RNase P is involved in the processing of tRNA precursors to generate mature 5' termini. The catalytic activity of RNase P is associated with an RNA, RNase P RNA. A specific interaction between the 3' end of the substrate and RNase P RNA, to form an RNase P RNA-substrate complex, is referred to as the '73-294-interaction'. This interaction has an important role for efficient...
متن کاملCleavage mediated by the P15 domain of bacterial RNase P RNA
Independently folded domains in RNAs frequently adopt identical tertiary structures regardless of whether they are in isolation or are part of larger RNA molecules. This is exemplified by the P15 domain in the RNA subunit (RPR) of the universally conserved endoribonuclease P, which is involved in the processing of tRNA precursors. One of its domains, encompassing the P15 loop, binds to the 3'-e...
متن کاملTransition-state stabilization in Escherichia coli ribonuclease P RNA-mediated cleavage of model substrates
We have used model substrates carrying modified nucleotides at the site immediately 5' of the canonical RNase P cleavage site, the -1 position, to study Escherichia coli RNase P RNA-mediated cleavage. We show that the nucleobase at -1 is not essential but its presence and identity contribute to efficiency, fidelity of cleavage and stabilization of the transition state. When U or C is present at...
متن کاملBinding and cleavage of unstructured RNA by nuclear RNase P.
Ribonuclease P (RNase P) is an essential endoribonuclease for which the best-characterized function is processing the 5' leader of pre-tRNAs. Compared to bacterial RNase P, which contains a single small protein subunit and a large catalytic RNA subunit, eukaryotic nuclear RNase P is more complex, containing nine proteins and an RNA subunit in Saccharomyces cerevisiae. Consistent with this, nucl...
متن کاملDifferent cleavage specificities of RNases III from Rhodobacter capsulatus and Escherichia coli.
23S rRNA in Rhodobacter capsulatus shows endoribonuclease III (RNase III)-dependent fragmentation in vivo at a unique extra stem-loop extending from position 1271 to 1331. RNase III is a double strand (ds)-specific endoribonuclease. This substrate preference is mediated by a double-stranded RNA binding domain (dsRBD) within the protein. Although a certain degree of double strandedness is a prer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nucleic acids research
دوره 32 18 شماره
صفحات -
تاریخ انتشار 2004